Biểu mẫu

Giải Toán 9 Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai

kthn.edu.vn mời quý thầy cô cùng tham khảo tài liệu Giải bài tập SGK Toán 9 Tập 1 trang 27 để xem gợi ý giải các bài tập của Bài 6: Biến đổi đơn giản biểu thức chứa căn thức bậc hai thuộc chương 1 Đại số 9.

Tài liệu được biên soạn với nội dung bám sát chương trình sách giáo khoa Toán lớp 9 tập 1. Qua đó, các em sẽ biết cách giải toàn bộ các bài tập của bài 6 Chương 1 trong sách giáo khoa Toán 9 Tập 1. Chúc các bạn học tốt.

Lý thuyết Biến đổi đơn giản biểu thức chứa căn thức bậc hai

Đưa thừa số ra ngoài dấu căn

1. Đưa thừa số ra ngoài dấu căn

Với hai biểu thức A, B mà Bgeq 0, ta có sqrt{A^{2}B}=left | A right |sqrt{B;} tức là:

Nếu Ageq 0 và Bgeq 0 thì sqrt{A^{2}B}=Asqrt{B};

Nếu A<0 và Bgeq 0 thì sqrt{A^{2}B}=-Asqrt{B}.

Ví dụ: Với xge 0 ta có:sqrt {48{x^2}} = sqrt {3.16{x^2}} = sqrt {{{left( {4x} right)}^2}.3} = 4xsqrt 3

2. Đưa thừa số vào trong dấu căn

Với Ageq 0Bgeq 0 thì Asqrt{B}=sqrt{A^{2}B};

Với A<0 và Bgeq 0 thì Asqrt{B}=-sqrt{A^{2}B}.

Ví dụ: Với x<0 ta có:xsqrt 3 = - sqrt {3{x^2}}

3. Khử mẫu của biểu thức lấy căn

Với hai biểu thức A, B mà ABgeq 0Bneq 0, ta có:

sqrt{dfrac{A}{B}}=dfrac{sqrt{Acdot B}}{left | B right |}.

Ví dụ: Với xne 0 ta có:sqrt {dfrac{{11}}{x}} = dfrac{{sqrt {11.x} }}{{left| x right|}}

4. Trục căn thức ở mẫu

Với hai biểu thức A, B mà B>0, ta có

dfrac{A}{sqrt{B}}=dfrac{Asqrt{B}}{B}.

Với các biểu thức A, B, C mà Ageq 0Aneq B^{2}, ta có

dfrac{C}{sqrt{A}pm B }=dfrac{C(sqrt{A}mp B)}{A-B^{2}}.

Với các biểu thức A, B, C mà Ageq 0, Bgeq 0Aneq B, ta có:

dfrac{C}{sqrt{A}pm sqrt{B}}=dfrac{C(sqrt{A}mp sqrt{B})}{A-B}.

Giải bài tập toán 9 trang 27 tập 1

Bài 43 (trang 27 SGK Toán 9 Tập 1)

Viết các số hoặc biểu thức dấu căn thành dạng tích rồi đưa thừa số ra ngoài dấu căn:

a. sqrt{54}

b. sqrt{108}

c. 0,1sqrt{20000}

d. -0,05sqrt{28800}

e. sqrt{7cdot 63cdot a^{2}}

Gợi ý đáp án

a. sqrt{54}

sqrt{54}=sqrt{9. 6}=sqrt{3^2.6}=3sqrt{6}.

b. sqrt{108}

sqrt{108}=sqrt{36.3}=sqrt{6^2.3}=6sqrt{3}.

c. 0,1sqrt{20000}

0,1sqrt{20000}=0,1sqrt{10000.2}=0,1sqrt{100^2.2}

=0,1.100sqrt{2}=10sqrt{2}.

d. -0,05sqrt{28800}

-0,05sqrt{28800}=-0,05.sqrt{144.100.2}

=-0,05sqrt{12^2.10^2.2}

=-0,05.12.10sqrt{2}=-6sqrt{2}.

e. sqrt{7cdot 63cdot a^{2}}

sqrt{7.63.a^{2}}=sqrt{7.(3.21).a^2}=sqrt{(7.3).21.a^2}

=sqrt{21.21.a^2}=sqrt{21^2.a^2}

=21|a|= left{ begin{array}{l}
21a,,khi,,a ge 0\
- 21a,,khi,,a < 0
end{array} right..

Bài 44 (trang 27 SGK Toán 9 Tập 1)

Đưa thừa số vào trong dấu căn:

3sqrt{5};,,-5sqrt{2};,, -dfrac{2}{3}sqrt{xy} với xygeq 0;,, xsqrt{dfrac{2}{x}} với x > 0.

Gợi ý đáp án

Ta có:

+) 3sqrt{5}=sqrt{3^2.5}=sqrt{9.5}=sqrt{45}.

+) -5sqrt{2}=-sqrt{5^2.2}=-sqrt{25.2}=-sqrt{50}.

+) Với xy>0 thì sqrt{xy} có nghĩa nên ta có:

-dfrac{2}{3}sqrt{xy}= - sqrt {{{left( {dfrac{2}{3}} right)}^2}.xy}=- sqrt {dfrac{4}{9}xy}.

+) Với x>0 thì sqrt {dfrac{2}{x}} có nghĩa nên ta có:

xsqrt {dfrac{2}{x}} = sqrt {{x^2}.dfrac{2}{x}} = sqrt {dfrac{x^2.2}{x}} = sqrt {dfrac{2x.x}{x}} = sqrt {2x}.

Bài 45 (trang 27 SGK Toán 9 Tập 1)

So sánh:

a. 3sqrt 3sqrt {12}

b. 7 và 3sqrt 5

c.dfrac{1}{3}sqrt{51}dfrac{1}{5}sqrt{150};

d. dfrac{1}{2}sqrt{6} và 6sqrt{dfrac{1}{2}}.

Gợi ý đáp án

a. 3sqrt 3sqrt {12}

Ta có:

3sqrt{3}=sqrt{3^2.3}=sqrt{9.3}=sqrt{27}.

27>12 Leftrightarrow sqrt{27} > sqrt{12}

Leftrightarrow 3sqrt{3} >sqrt{12}.

Vậy:3sqrt{3}>sqrt{12}.

Cách khác:

sqrt {12} = sqrt {4.3} = sqrt {{2^2}.3} = 2sqrt 3 < 3sqrt 3

b. 7 và 3sqrt 5

Ta có:

7=sqrt{7^2}=sqrt{49}.

3sqrt{5}=sqrt{3^2.5}=sqrt{9.5}=sqrt{45}.

49> 45 Leftrightarrow sqrt {49}> sqrt {45} Leftrightarrow 7 >3sqrt 5.

Vậy: 7>3sqrt{5}.

c.dfrac{1}{3}sqrt{51}dfrac{1}{5}sqrt{150};

Ta có:

dfrac{1}{3}sqrt{51}= sqrt {{left(dfrac{1}{3} right)}^2.51 } = sqrt {dfrac{1}{9}.51} = sqrt {dfrac{51}{9}}

= sqrt {dfrac{3.17}{3.3}} = sqrt {dfrac{17}{3}} .

dfrac{1}{5}sqrt{150}= sqrt {{left(dfrac{1}{5} right)}^2.150 } = sqrt {dfrac{1}{25}.150} = sqrt {dfrac{150}{25}}

= sqrt {dfrac{6.25}{25}} = sqrt {6}=sqrt{dfrac{18}{3}} .

dfrac{17}{3} <dfrac{18}{3} Leftrightarrow sqrt{dfrac{17}{3}} < sqrt{dfrac{18}{3}}

Leftrightarrow dfrac{1}{3}sqrt{51} <dfrac{1}{5}sqrt{150}.

Vậy: dfrac{1}{3}sqrt{51} <dfrac{1}{5}sqrt{150}.

d. dfrac{1}{2}sqrt{6} và 6sqrt{dfrac{1}{2}}.

Ta có:

dfrac{1}{2}sqrt{6}= sqrt {{left(dfrac{1}{2} right)}^2.6 } = sqrt {dfrac{1}{4}.6} = sqrt {dfrac{6}{4}} = sqrt {dfrac{2.3}{2.2}}

= sqrt {dfrac{3}{2}} .

6sqrt{dfrac{1}{2}}=sqrt{6^2.dfrac{1}{2}}=sqrt{36.dfrac{1}{2}}=sqrt{dfrac{36}{2}}.

dfrac{3}{2}<dfrac{36}{2} Leftrightarrow sqrt{dfrac{3}{2}}< sqrt{dfrac{36}{2}}

Leftrightarrow dfrac{1}{2}sqrt{6} <6sqrt{dfrac{1}{2}}.

Vậy: dfrac{1}{2}sqrt{6}<6sqrt{dfrac{1}{2}}.

Bài 46 (trang 27 SGK Toán 9 Tập 1)

Rút gọn các biểu thức sau vớixgeq 0:

a. 2sqrt{3x}-4sqrt{3x}+27-3sqrt{3x}

b. 3sqrt{2x}-5sqrt{8x}+7sqrt{18x}+28

Gợi ý đáp án

Ta có: 2sqrt{3x}-4sqrt{3x}+27-3sqrt{3x}

= (2sqrt{3x}-4sqrt{3x}-3sqrt{3x})+27=(2-4-3)sqrt{3x}+27

=-5sqrt{3x}+27.

b. 3sqrt{2x}-5sqrt{8x}+7sqrt{18x}+28

Dùng phép đưa thừa số ra ngoài dấu căn để có những căn thức giống nhau là sqrt{2x}.

Ta có:

3sqrt{2x}-5sqrt{8x}+7sqrt{18x}+28=3sqrt{2x}-5sqrt{4.2x}+7sqrt{9.2x}+28

=3sqrt{2x}-5sqrt{2^2.2x}+7sqrt{3^2.2x}+28=3sqrt{2x}-5.2sqrt{2x}+7.3sqrt{2x}+28

=(3sqrt{2x}-5.2sqrt{2x}+7.3sqrt{2x})+28=(3sqrt{2x}-10sqrt{2x}+21sqrt{2x})+28

= (3-10+21)sqrt{2x}+28

=14sqrt{2x}+28.

Bài 47 (trang 27 SGK Toán 9 Tập 1)

Rút gọn:

a. dfrac{2}{x^2 - y^2}sqrt {dfrac{3 (x + y)^2}{2}} với x ≥ 0; y ≥ 0 và x ≠ y

b. dfrac{2}{2a - 1}sqrt {5a^2(1 - 4a + 4a^2} ) với a > 0,5.

Gợi ý đáp án

a. Ta có: Vì x ge 0yge 0 nên x+y ge 0 Leftrightarrow |x+y|=x+y.

dfrac{2}{x^2 - y^2}sqrt {dfrac{3 (x + y)^2}{2}} =dfrac{2}{x^2 - y^2}sqrt {dfrac{3}{2}.(x+y)^2}

=dfrac{2}{x^2 - y^2}.sqrt{dfrac{3}{2}}.sqrt{(x+y)^2}

=dfrac{2}{x^2 - y^2}.sqrt{dfrac{3}{2}}.|x+y|=dfrac{2}{(x+y)(x-y)}.sqrt{dfrac{3}{2}}.(x+y)

=dfrac{2}{x-y}.sqrt{dfrac{3}{2}}=dfrac{1}{x-y}.2.sqrt{dfrac{3}{2}}

=dfrac{1}{x-y}.sqrt{dfrac{2^2.3}{2}}=dfrac{1}{x-y}.sqrt{6} =dfrac{sqrt 6}{x-y}

b. dfrac{2}{2a - 1}sqrt {5a^2(1 - 4a + 4a^2} ) với a > 0,5.

Ta có:

dfrac{2}{2a-1}sqrt{5a^2(1-4a+4a^2)}=dfrac{2}{2a-1}sqrt{5a^2(1-2.2a+2^2a^2)}

=dfrac{2}{2a-1}sqrt{5a^2 [1^2-2.1.2a+(2a)^2]}=dfrac{2}{2a-1}sqrt{5a^2(1-2a)^2}

=dfrac{2}{2a-1}sqrt{5}.sqrt{a^2}.sqrt{(1-2a)^2}=dfrac{2}{2a-1}sqrt{5}.|a|.|1-2a|

Vì a> 0,5 nên a>0 Leftrightarrow |a| =a.

a> 0,5 Leftrightarrow 2a> 2.0,5 Leftrightarrow 2a >1 hay 1<2a

Leftrightarrow 1-2a < 0 Leftrightarrow |1-2a|=-(1-2a)

=-1+2a=2a-1

Thay vào trên, ta được:

dfrac{2}{2a-1}sqrt{5}.|a|.|1-2a|=dfrac{2}{2a-1}sqrt{5}.a.(2a-1)=2asqrt{5}.

Vậy dfrac{2}{2a-1}sqrt{5a^2(1-4a+4a^2)}=2asqrt{5}.

KTHN

Đào tạo kế toán cấp tốc uy tín chất lượng Trung tâm đào tạo kế toán cấp tốc uy tín chất lượng tốt nhất hà nội, tphcm, bắc ninh, hải phòng, hải dương hay cần thơ...Cung cấp nguồn nhân lực chất lượng cho các doanh nghiệp trên cả nước.
Back to top button