Wiki

Cơ học lượng tử

Các hàm sóng của electron trong một nguyên tử hydro tại các mức năng lượng khác nhau. Cơ học lượng tử không dự đoạn chính xác vị trí của một hạt trong không gian, nó chỉ tính ra giá trị xác suất có thể tìm thấy hạt tại các vị trí khác nhau. Các vùng sáng màu hơn minh họa xác suất tìm thấy electron cao hơn.

Cơ học lượng tử là một lý thuyết cơ bản trong vật lý học miêu tả các tính chất vật lý của tự nhiên ở cấp độ nguyên tử và hạt hạ nguyên tử. Nó là cơ sở của mọi lý thuyết vật lý lượng tử bao gồm hóa học lượng tử, lý thuyết trường lượng tử, công nghệ lượng tử, và khoa học thông tin lượng tử.

Vật lý cổ điển, miêu tả vật lý trước khi có thuyết tương đối và cơ học cổ điển, miêu tả nhiều khía cạnh của tự nhiên ở mức độ thông thường (vĩ mô), trong khi cơ học lượng tử giải thích các khía cạnh của tự nhiên ở mức vi mô (phân tử, nguyên tử và nhỏ hơn nguyên tử), mà ở phạm vi này cơ học cổ điển không còn miêu tả chính xác. Hầu hết các lý thuyết trong vật lý cổ điển có thể thu được từ cơ học lượng tử thông qua xấp xỉ ở quy mô lớn (vĩ mô).

Cơ học lượng tử khác với cơ học cổ điển ở chỗ năng lượng, động lượng, mô men động lượng, và các đại lượng khác của một hệ đóng nhận các giá trị rời rạc (lượng tử hóa), các thực thể mang cả đặc trưng của hạt lẫn của sóng (lưỡng tính sóng hạt), và có những giới hạn về tính toán xác định độ chính xác của đại lượng vật lý trước mỗi phép đo đại lượng đó, cho bởi một tập hợp đầy đủ các điều kiện ban đầu (nguyên lý bất định).

Cơ học lượng tử dần dần xuất hiện từ các lý thuyết giải thích các quan sát thực nghiệm mà vật lý cổ điển không miêu tả được, như lời giải của Max Planck năm 1900 cho vấn đề bức xạ vật đen, và mối liên hệ giữa năng lượng và tần số tương ứng trong bài báo năm 1905 của Albert Einstein nhằm giải thích hiệu ứng quang điện. Những cố gắng ban đầu nhằm hiểu các hiện tượng vi mô, mà hiện nay gọi là “thuyết lượng tử cũ”, đã dẫn đến sự phát triển đầy đủ của cơ học lượng tử vào giữa thập niên 1920 bởi Niels Bohr, Erwin Schrödinger, Werner Heisenberg, Max Born và những nhà khoa học khác. Lý thuyết hiện đại được hình thành và miêu tả bằng nhiều mô hình toán học đặc trưng. Một trong những mô hình này, một khái niệm toán học gọi là hàm sóng chứa đựng thông tin, dưới dạng các biên độ xác suất, về kết quả các phép đo năng lượng, động lượng và các tính chất vật lý khác của hạt.

Tổng quan và các khái niệm cơ bản


Cơ học lượng tử cho phép tính toán các tính chất và hành xử của các hệ thống vật lý. Nó thường được áp dụng cho các hệ thống vi mô: phân tử, nguyên tử và các hạt hạ nguyên tử. Nó đã được chứng minh là có thể miêu tả đúng cho các phân tử phức tạp chứa hàng nghìn nguyên tử, nhưng ứng dụng của nó đối với con người làm nảy sinh các vấn đề triết học, chẳng hạn như thí nghiệm tưởng tượng bạn của Wigner, và ứng dụng của nó đối với toàn thể vũ trụ vẫn là suy đoán. Các dự đoán của cơ học lượng tử đã được kiểm chứng bằng thực nghiệm với độ chính xác cực cao.

Đặc điểm cơ bản của lý thuyết đó là nó không thể dự đoán một cách chắc chắn điều gì sẽ xảy ra mà chỉ đưa ra các xác suất cho mỗi khả năng. Về mặt toán học, xác suất được tìm thấy bằng cách lấy bình phương của giá trị tuyệt đối của một số phức, được gọi là biên độ xác suất. Đây được gọi là quy tắc Born, được đặt theo tên của nhà vật lý Max Born. Ví dụ, một hạt lượng tử như electron có thể được mô tả bằng một hàm sóng, hàm liên kết với mỗi điểm trong không gian tương ứng một biên độ xác suất. Áp dụng quy tắc Born cho các biên độ này sẽ cho một hàm mật độ xác suất cho vị trí mà electron sẽ được tìm thấy khi một thí nghiệm được thực hiện để đo nó. Đây là điều tốt nhất mà lý thuyết có thể làm được; nó không thể nói chắc chắn nơi electron sẽ được tìm thấy. Phương trình Schrödinger liên hệ tập hợp các biên độ xác suất liên quan đến một thời điểm với tập hợp các biên độ xác suất liên quan đến một thời điểm khác.

Một hệ quả của các quy tắc toán học của cơ học lượng tử là sự cân bằng về khả năng dự đoán giữa các đại lượng có thể đo lường khác nhau. Dạng nổi tiếng nhất của nguyên lý bất định này nói rằng bất kể một hạt lượng tử được chuẩn bị như thế nào hoặc các thí nghiệm được sắp xếp cẩn thận như thế nào, thì không thể đồng thời dự đoán chính xác được kết quả phép đo vị trí của hạt và kết quả phép đo động lượng của nó.

Một hệ quả khác của các quy tắc toán học của cơ học lượng tử là hiện tượng giao thoa lượng tử, thường được minh họa bằng thí nghiệm hai khe. Trong phiên bản cơ bản của thí nghiệm này, một nguồn sáng kết hợp, chẳng hạn như chùm tia laser, chiếu sáng qua hai khe hẹp song song trên một tấm và ánh sáng đi qua các khe được quan sát trên một màn hình đặt phía sau tấm. Bản chất sóng của ánh sáng làm cho các sóng ánh sáng đi qua hai khe giao thoa, tạo ra các dải sáng và tối trên màn hình – sẽ không có kết quả này nếu ánh sáng có thành phần là các hạt cổ điển. Tuy nhiên, trên màn chắn ánh sáng luôn bị hấp thụ tại các điểm rời rạc, dưới dạng các hạt riêng lẻ chứ không phải là sóng; hình ảnh giao thoa xuất hiện thông qua mật độ thay đổi của các hạt va chạm vào màn hình. Hơn nữa, nếu đặt các máy dò tại ngay sau các khe thì mỗi photon được phát hiện sẽ đi qua chỉ một khe (giống như một hạt cổ điển), và không đi qua cả hai khe (như một sóng). Tuy nhiên ở các thí nghiệm này cũng chứng tỏ, các hạt sẽ không hình thành vân giao thoa nếu máy dò thu được chúng đi qua khe hẹp nào. Đối với những thực thể ở cấp độ nguyên tử khác, như electron, cũng được tìm thấy có hành xử tương tự khi bắn các electron qua hai khe hẹp. Đặc điểm này được gọi là lưỡng tính sóng hạt.

Một hiện tượng phản trực giác khác cũng được dự đoán bởi cơ học lượng tử đó là sự xuyên hầm lượng tử: một hạt có thể đi qua một hàng rào hố thế, ngay cả khi động năng của nó nhỏ hơn thế năng của hố. Trong cơ học cổ điển hiện tượng này không thể xảy ra. Sự xuyên hầm lượng tử có một vài hệ quả quan trọng, như nó cho phép giải thích hiện tượng phân rã phóng xạ, phản ứng tổng hợp hạt nhân bên trong các sao, và các ứng dụng khác như kính hiển vi quét xuyên hầm và diode tunnel.

Khi các hệ lượng tử tương tác, kết quả có thể dẫn đến hiệu ứng rối lượng tử: các thuộc tính của chúng trở nên gắn bó với nhau đến mức không còn có thể mô tả tổng thể theo từng phần riêng lẻ nữa. Erwin Schrödinger gọi sự vướng víu là “… đặc điểm đặc trưng của cơ học lượng tử, đặc điểm bắt buộc nó hoàn toàn tách khỏi các dòng tư tưởng cổ điển”. Vướng víu lượng tử cho phép các tính chất phản trực giác như trong lý thuyết trò chơi giả lượng tử (quantum pseudo-telepathy), và là một nguồn đặc điểm vô giá trong các giao thức truyền thông, như phân bố chìa khóa lượng tử trong lý thuyết thông tin lượng tử. Trái ngược với quan niệm sai lầm phổ biến, hiệu ứng vướng víu lượng tử không cho phép gửi tín hiệu nhanh hơn ánh sáng, như được chứng minh bởi định lý không thể liên lạc (no-communication theorem).

Một khả năng khác mở ra bởi sự vướng víu lượng tử đó là thực hiện kiểm nghiệm “lý thuyết các biến ẩn”, các tính chất giả thuyết cơ bản hơn các đại lượng được miêu tả trong chính thuyết lượng tử, các hiểu biết về các biến ẩn cho phép các dự đoán chính xác hơn so với thuyết lượng tử có thể đưa ra. Tập hợp các kết quả, quan trọng nhất là định lý Bell, đã chứng minh rằng các lớp lý thuyết biến ẩn như vậy trên thực tế không tương thích với vật lý lượng tử. Theo định lý Bell, nếu tự nhiên thực sự hoạt động tuân theo một lý thuyết biến ẩn cục bộ nào, thì các kết quả của một thí nghiệm Bell sẽ bị ràng buộc theo một cách đặc biệt, định lượng được. Nhiều thí nghiệm Bell đã được thực hiện, sử dụng các hạt vướng víu, và chúng cho kết quả không tương thích với các ràng buộc áp đặt bởi các biến ẩn cục bộ.

Không thể trình bày các khái niệm này một cách sâu sắc hơn mà không đưa ra giới thiệu các định nghĩa toán học liên quan; để hiểu cơ học lượng tử đòi hỏi không chỉ nắm được các phép toán trên các số phức, mà còn đại số tuyến tính, phương trình vi phân, lý thuyết nhóm, và các chủ đề toán học cao cấp khác. Theo đó, bài viết này sẽ trình bày một khuôn khổ toán học của cơ học lượng tử và đưa ra các ứng dụng của nó ở một số ví dụ hữu ích và đã được nghiên cứu.

Khuôn khổ toán học


Bài chi tiết: Phát biểu toán học của cơ học lượng tử

Trong khuôn khổ toán học chặt chẽ của cơ học lượng tử, trạng thái của một hệ cơ học lượng tử là một vectơ




ψ


{displaystyle psi }

Cơ học lượng tử Hình 1: Các mật độ xác suất tương ứng với các hàm sóng của một electron trong một nguyên tử hydro có các mức năng lượng xác định (tăng từ phía trên của hình xuống bên dưới: n = 1, 2, 3, …) và mô men động lượng (tăng từ trái qua phải: s, p, d, …). Các vùng đậm hơn tương ứng với mật độ xác suất cao hơn khi thực hiện phép đo vị trí. Các hàm sóng giống với các hình ảnh dao động Chaladni của các nốt âm thanh trong vật lý cổ điển, thể hiện rõ các mức năng lượng và do vậy một tần số cụ thể. Mô men động lượng và năng lượng bị lượng tử hóa và chỉ nhận các giá trị rời rạc như trong hình (giống như trường hợp các tần số cộng hưởng trong âm học)

Một số hàm sóng có phân bố xác suất độc lập với thời gian, như trạng thái riêng của Hamiltonian. Nhiều hệ có tính động lực trong cơ học cổ điển được miêu tả bằng những hàm sóng tĩnh như thế. Ví dụ, một electron ở trạng thái bình thường trong nguyên tử được hình dung theo cách cổ điển như là một hạt chuyển động tròn trên qũy đạo quanh hạt nhân nguyên tử, trong khi đó ở cơ học lượng tử, nó được miêu tả bằng một hàm sóng tĩnh (không phụ thuộc thời gian) bao quanh hạt nhân. Ví dụ, hàm sóng cho electron đối với một nguyên tử hydro ở trạng thái bình thường là một hàm đối xứng cầu gọi là orbital s (Hình 1).

Có ít các nghiệm giải tích của phương trình Schrödinger được biết một cách chính xác, chúng chủ yếu là nghiệm của các mô hình Hamilton tương đối đơn giản bao gồm dao động tử điều hòa lượng tử (quantum harmonic oscillator), hạt trong một hộp, cation hydro phân tử, và nguyên tử hydro. Ngay cả với nguyên tử heli – mà chỉ chứa có hai electron – hiện vẫn chưa có nghiệm giải tích chính xác miêu tả cho hệ này.

Tuy vậy đã có những kỹ thuật để tìm các nghiệm xấp xỉ. Một phương pháp gọi là lý thuyết nhiễu loạn, sử dụng kết quả giải tích của một một hình cơ học lượng tử đơn giản nhằm tạo ra kết quả cho những mô hình liên quan phức tạp hơn (ví dụ) bằng cách thêm vào một thế năng yếu. Một phương pháp khác gọi là “phương trình chuyển động bán cổ điển”, áp dụng cho các hệ mà cơ học lượng tử chỉ tạo ra những chênh lệch nhỏ so với hệ cổ điển. Những chênh lệch nhỏ này khi ấy có thể được tính từ những chuyển động cổ điển. Cách tiếp cận này đặc biệt quan trọng trong lý thuyết hỗn loạn lượng tử (quantum chaos).

Nguyên lý bất định

Một hệ quả cơ bản của hình thức luận cơ bản cơ học lượng tử đó là nguyên lý bất định. Trong dạng quen thuộc nhất, nguyên lý phát biểu rằng không có sự chuẩn bị nào của một hạt lượng tử có thể cho phép dự đoán chính xác đồng thời kết quả đo vị trí và kết quả đo động lượng của hạt. Cả vị trí và động lượng là những đại lượng quan sát được, có nghĩa rằng chúng được biểu diễn bởi các toán tử Hermit. Hai toán tử vị trí







X
^





{displaystyle {hat {X}}}

Cơ học lượng tử Hộp thế năng 1 chiều (hay giếng thế vô hạn)
Bài chi tiết: Hạt trong một hộp

Hạt trong hộp thế năng một chiều là ví dụ đơn giản nhất về mặt toán học, nơi các giới hạn dẫn đến sự lượng tử hóa các mức năng lượng. Hộp được xác định có thế năng bằng 0 ở khắp nơi bên trong một vùng nhất định, và có thế năng lớn vô hạn khắp nơi bên ngoài vùng này. Đối với trường hợp một chiều theo hướng




x


{displaystyle x}

Cơ học lượng tử Sơ đồ giao thoa kế Mach–Zehnder.

Giao thoa kế Mach–Zehnder (MZI) minh họa các khái niệm chồng chập và giao thoa bằng đại số tuyến tính trong không gian hai chiều, hơn là bằng các phương trình vi phân. Có thể coi giao thoa kế là một phiên bản đơn giản của thí nghiệm hai khe, tuy thế nó cũng có những đặc điểm thú vị, ví dụ như trong thí nghiệm bộ xóa lượng tử lựa chọn trễ (delayed choice quantum eraser), thí nghiệm tưởng tượng kiểm tra sự hoạt động của quả bom bởi Elitzur–Vaidman (Elitzur–Vaidman bomb tester), và các nghiên cứu trong vướng víu lượng tử.

Chúng ta có thể mô hình một photon đi qua giao thoa kế bằng cách xem xét rằng tại mỗi điểm nó có thể ở trong sự chồng chập chỉ của hai đường đi: đường “phía dưới” bắt đầu từ bên trái, đi thẳng qua bộ tách chùm tia, và kết thúc ở bên trên, và đường “phía trên” bắt đầu từ đáy, đi thẳng qua bộ tách chùm tia, và kết thúc ở bên phải. Trạng thái lượng tử của photon do đó là một vectơ




ψ



C


2




{displaystyle psi in mathbb {C} ^{2}}

Cơ học lượng tử Vấn đề mở trong vật lý học:
Liệu có lời giải thích nào về cơ học lượng tử đúng đắn hơn hay không? Làm thế nào mà sự mô tả lượng tử của thực tại, bao gồm các yếu tố như “sự chồng chập của các trạng thái” và “suy sập hàm sóng”, có thể tái tạo lại thực tại mà chúng ta nhận thức?(các vấn đề mở khác trong vật lý học)

Kể từ khi ra đời, nhiều khía cạnh phản trực giác và kết quả của cơ học lượng tử đã gây ra các cuộc tranh luận triết học mạnh mẽ và nhiều cách giải thích khác nhau. Các lập luận tập trung vào bản chất xác suất của cơ học lượng tử, những khó khăn với sự suy sụp hàm sóng và vấn đề đo lường liên quan, và tính phi định xứ lượng tử. Có lẽ sự đồng thuận duy nhất tồn tại về những vấn đề này là không có sự đồng thuận nào cả. Richard Feynman từng nói, “Tôi nghĩ tôi có thể tự tin khi nói rằng không ai hiểu cơ học lượng tử.” Theo Steven Weinberg, “Theo quan điểm của tôi, hiện nay không có cách giải thích nào hoàn toàn thỏa đáng về cơ học lượng tử.”

Quan điểm của Niels Bohr, Werner Heisenberg và của các nhà vật lý khác thường được nhóm lại với nhau bằng cách “giải thích Copenhagen”. Theo những quan điểm này, bản chất xác suất của cơ học lượng tử không phải là một đặc điểm tạm thời mà cuối cùng sẽ bị thay thế bởi một lý thuyết xác định, mà thay vào đó là sự từ bỏ ý tưởng cổ điển về “quan hệ nhân quả”. Bohr đặc biệt nhấn mạnh rằng bất kỳ ứng dụng nào được xác định rõ ràng của hình thức luận cơ lượng tử phải luôn tham chiếu đến cách sắp xếp thí nghiệm, do bản chất bổ sung của bằng chứng thu được trong các tình huống thí nghiệm khác nhau. Cách giải thích kiểu Copenhagen vẫn còn phổ biến trong thế kỷ 21.

Bản thân Albert Einstein, một trong những người sáng lập thuyết lượng tử, đã gặp khó khăn khi lý thuyết rõ ràng không tuân theo một số nguyên lý siêu hình được ưa thích, như tính tất định và tính định xứ. Những cuộc trao đổi lâu dài của Einstein với Bohr về ý nghĩa và trạng thái của cơ học lượng được biết đến là tranh luận Bohr–Einstein. Einstein tin rằng bên dưới cơ học lượng tử phải có một lý thuyết không cho phép tồn tại tác dụng ở một khoảng cách từ xa (action at a distance). Ông cho rằng cơ học lượng tử là lý thuyết chưa đầy đủ, lý thuyết có giá trị đúng nhưng chưa ở mức cơ bản, tương tự như nhiệt động lực học là đúng, nhưng lý thuyết cơ bản bên dưới nó là cơ học thống kê. Năm 1935, Einstein và các cộng sự Boris Podolsky và Nathan Rosen công bố lập luận cho rằng nguyên lý định xứ hàm ý sự không hoàn chỉnh của cơ học lượng tử, sau đó một thí nghiệm tưởng tượng được đặt tên là nghịch lý Einstein–Podolsky–Rosen. Năm 1964, John Bell đã chỉ ra rằng nguyên lý định xứ của EPR, cùng với thuyết tất định, thực sự không tương thích với cơ học lượng tử: chúng ngụ ý những ràng buộc đối với các mối tương quan tạo ra bởi các hệ thống khoảng cách, ngày nay được gọi là các bất đẳng thức Bell, có thể bị vi phạm bởi các hạt vướng víu. Kể từ đó đã có một số thí nghiệm được thực hiện để kiểm tra các mối tương quan này, với kết quả thu được đúng là chúng vi phạm bất đẳng thức Bell, và do vậy bác bỏ sự kết hợp giữa tính định xứ và thuyết tất định.

Lý thuyết De Broglie–Bohm chỉ ra có thể viết lại hình thức luận của cơ học lượng tử để cho nó tương thích với thuyết tất định, nhưng với giá làm cho lý thuyết thể hiện rõ tính phi định xứ. Nó không chỉ quy một hàm sóng cho một hệ thống vật lý, mà còn cho một vị trí thực, tiến triển một cách xác định theo một phương trình hướng dẫn phi cục bộ. Sự tiến triển của một hệ thống vật lý được cho bởi ở mọi thời gian từ phương trình Schrödinger cùng với phương trình hướng dẫn; do vậy không bao giờ có sự suy sụp của hàm sóng. Điều này giải quyết vấn đề đo lường.

Cách giải thích đa thế giới của Everett, đưa ra vào năm 1956, cho rằng mọi xác suất miêu tả bởi thuyết lượng tử đồng thời xuất hiện trong một đa vũ trụ chứa các vũ trụ song song độc lập với nhau. Đây là hệ quả của việc xóa bỏ tiên đề về sự suy sụp bó sóng. Mọi trạng thái khả dĩ của hệ được đo và thiết bị đo, cùng với người quan sát, được biểu diễn trong sự chồng chập lượng tử vật lý thực. Trong khi đa vũ trụ là tất định, chúng ta chỉ nhận thức các hành xử phi tất định bị chi phối bởi các xác suất, bởi vì chúng ta không quan sát được đa vũ trụ một cách tổng thể, mà chỉ có thể quan sát được một vũ trụ song song ở một thời điểm. Chính xác cách thức hoạt động của điều này đã là chủ đề của nhiều cuộc tranh luận. Một số nỗ lực đã được thực hiện để hiểu điều này và rút ra quy tắc Born, mà không có sự đồng thuận về việc liệu chúng có thành công hay không.

Cơ học lượng tử quan hệ (Relational quantum mechanics) xuất hiện vào cuối thập niên 1990 như là một thuyết phái sinh hiện đại của những ý tưởng kiểu Copenhagen, và QBism được phát triển ở một vài năm về sau.

Lịch sử


Bài chi tiết: Lịch sử cơ học lượng tử
Cơ học lượng tử Max Planck được coi là cha đẻ của thuyết lượng tử.

Cơ học lượng tử được phát triển vào những thập kỷ đầu của thế kỷ 20, được thúc đẩy bởi nhu cầu giải thích các hiện tượng, trong một số trường hợp, đã được quan sát thấy trong thời gian trước đó. Nghiên cứu khoa học về bản chất sóng của ánh sáng bắt đầu vào thế kỷ 17 và 18, khi các nhà khoa học như Robert Hooke, Christiaan Huygens và Leonhard Euler đề xuất lý thuyết sóng của ánh sáng dựa trên các quan sát thực nghiệm. Năm 1803 nhà bác học Thomas Young người Anh miêu tả thí nghiệm hai khe nổi tiếng. Thí nghiệm này đóng một vai trò quan trọng trong việc chấp nhận chung lý thuyết sóng của ánh sáng.

Năm 1838, Michael Faraday khám phá ra tia âm cực. Những nghiên cứu này được theo sau bởi tuyên bố năm 1859 về vấn đề bức xạ vật đen của Gustav Kirchhoff, đề xuất năm 1877 của Ludwig Boltzmann rằng trạng thái năng lượng của một hệ vật chất có thể rời rạc, và giả thuyết lượng tử năm 1900 của Max Planck. Giả thuyết của Planck rằng năng lượng được bức xạ và hấp thụ trong các “lượng tử” (hay gói năng lượng) rời rạc khớp chính xác với các dạng bức xạ vật đen quan sát được. Từ lượng tử bắt nguồn từ tiếng Latinh, có nghĩa là “lớn như thế nào” hoặc “bao nhiêu”. Theo Planck, các đại lượng năng lượng có thể được coi chia thành các “phần tử” có độ lớn (E) tỷ lệ với tần số (ν) của chúng:




E
=
h
ν
 


{displaystyle E=hnu }

Cơ học lượng tử Hội nghị Solvay năm 1927 tại Brussels là hội nghị vật lý thế giới lần thứ năm.

Vào giữa những năm 1920, cơ học lượng tử đã được phát triển để trở thành lý thuyết tiêu chuẩn cho vật lý nguyên tử. Năm 1923, nhà vật lý người Pháp Louis de Broglie đưa ra lý thuyết của mình về sóng vật chất bằng cách phát biểu rằng các hạt có thể biểu hiện các đặc tính của sóng và ngược lại. Dựa trên cách tiếp cận của de Broglie, cơ học lượng tử hiện đại ra đời vào năm 1925, khi các nhà vật lý người Đức Werner Heisenberg, Max Born, và Pascual Jordan phát triển cơ học ma trận và nhà vật lý người Áo Erwin Schrödinger phát minh ra cơ học sóng. Born đã giới thiệu cách giải thích xác suất của hàm sóng Schrödinger vào tháng 7 năm 1926. Do đó, toàn bộ lĩnh vực vật lý lượng tử đã xuất hiện, dẫn đến việc nó được chấp nhận rộng rãi hơn tại hội nghị Solvay lần thứ năm vào năm 1927.

Đến năm 1930, cơ học lượng tử đã được David Hilbert, Paul Dirac và John von Neumann thống nhất và toán học hóa hơn nữa với sự nhấn mạnh nhiều hơn vào phép đo, bản chất thống kê của kiến thức về thực tế của chúng ta và suy đoán triết học về ‘người quan sát’. Kể từ đó, nó đã thâm nhập vào nhiều ngành, bao gồm hóa học lượng tử, điện tử lượng tử, quang học lượng tử và khoa học thông tin lượng tử. Nó cũng cung cấp một khuôn khổ hữu ích cho nhiều đặc điểm của bảng tuần hoàn các nguyên tố hiện đại, và mô tả hành vi của các nguyên tử trong quá trình liên kết hóa học và dòng electron trong chất bán dẫn máy tính, và do đó đóng một vai trò quan trọng trong nhiều công nghệ hiện đại. Trong khi cơ học lượng tử được xây dựng để mô tả thế giới rất nhỏ, nó cũng cần thiết để giải thích một số hiện tượng vĩ mô chẳng hạn như chất siêu dẫn và siêu lỏng.

Xem thêm


  • Nguyên tử
  • Hệ hai trạng thái lượng tử
  • Vật lý lý thuyết
  • Vật lý thực nghiệm
  • Lịch sử vật lý học

Chú thích


Check Also
Close
Back to top button